Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Arthropod Borne Dis ; 11(2): 260-277, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29062851

RESUMO

BACKGROUND: The incidence of mosquito-borne diseases and the resistance of mosquitoes to conventional pesticides have recently caused a panic to the authorities in the endemic countries. This study was conducted to identify native larvicidal biopesticides against Culex pipiens for utilization in the battle against mosquito-borne diseases. METHODS: Larvicidal activities of new indigenous Bacillus thuringiensis isolates and crude toxin complexes (TCs) of two nematode bacterial-symbionts, Photorhabdus luminescens akhurstii (HRM1) and Ph. luminescens akhurstii (HS1) that tested against Cx. pipiens. B. thuringiensis isolates were recovered from different environmental samples in Saudi Arabia, and the entomopathogenic nematodes, Heterorhabditis indica (HRM1) and He. sp (HS1) were isolated from Egypt. Larvicidal activities (LC50 and LC95) of the potentially active B. thuringiensis strains or TCs were then evaluated at 24 and 48h post-treatment. RESULTS: Three B. thuringiensis isolates were almost as active as the reference B. thuringiensis israelensis (Bti-H14), and seven isolates were 1.6-5.4 times more toxic than Bti-H14. On the other hand, the TCs of the bacterial symbionts, HRM1 and HS1, showed promising larvicidal activities. HS1 showed LC50 of 2.54 folds that of HRM1 at 24h post-treatment. Moreover, histopathological examinations of the HS1-treated larvae showed deformations in midgut epithelial cells at 24h post-treatment. CONCLUSION: Synergistic activity and molecular characterization of these potentially active biocontrol agents are currently being investigated. These results may lead to the identification of eco-friend mosquito larvicidal product(s) that could contribute to the battle against mosquito-borne diseases.

2.
3 Biotech ; 7(1): 6, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28391470

RESUMO

Five bacterial strains were isolated from the hemocoel of the greater wax moth larvae (Galleria mellonella) infected with the entomopathogenic nematodes: Heterorhabditis bacteriophora HP88, Heterorhabditis indicus RM1 and Heterorhabditis sp (S1), Steinernema abbasi and Steinernema sp. (S II). Strains were identified as Photorhabdus luminescens HRM1, P. luminescens HS1, P. luminescens HP88, Xenorhabdus indica and X. nematophila ATTC19061 using 16S rDNA sequence analysis. To reveal the genetic diversity among these strains, three molecular markers (RAPD, ISSR and SRAP) were employed. RAPD analysis showed 73.8 and 54.5 polymorphism percentages for the Photorhabdus and Xenorhabdus strains, respectively. ISSR analysis resulted in 70.1 and 75.2 polymorphism percentages among the Photorhabdus and Xenorhabdus strains, respectively. The SRAP analysis indicated that 75.6 and 61.2% genetic polymorphism was detected among Photorhabdus and Xenorhabdus strains, respectively. The cluster analysis grouped the three Photorhabdus strains together in one cluster and the two Xenorhabdus strains together in another cluster indicating the phylogenetic relationships among them. The genotype-specific markers detected from the three molecular markers (RAPD, ISSR and SRAP) were sufficient to distinguish between the different bacterial strains tested and can be used in the future IBM program that could be built on the use of these strains.

3.
Pak J Biol Sci ; 11(4): 508-16, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18817119

RESUMO

Biological control of hard ticks, Hyalomma dromedarii (Acari: Ixodidae) using entomopathogenic nematode of two families; Heterorhabditidae and Steinernematidae was studied. The protective effect of controlled ticks including haemolymph and haemocytes against these biological agents were also investigated. It was found that heterorhabditid strains cause a higher effect in biological control of engorged female H. dromedarii than those of stienernematid strains. It induced mortality rates ranged from 12-92% versus 4-88% for stienernematid strains. It was also found that these entomopathogenic nematodes can not reproduce within the exposed ticks. SDS-PAGE of proteins extracted from midguts and salivary glands infected with 4000 IJs tick(-1) separated 21 and 25 protein bands versus 13 and 19 protein bands from non-infected ones, respectively. It was concluded that entomopathogenic nematodes of family Heterorhabditidae proved to have a potential acaricidal effect in the control of hard ticks. Moreover, the controlled ticks released unknown proteins in their haemolymph that may promote the haemocytes to phagocyte the nematodes as a type of defense mechanism.


Assuntos
Proteínas de Insetos/metabolismo , Ixodidae , Nematoides/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Sistema Digestório/metabolismo , Sistema Digestório/parasitologia , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ixodidae/anatomia & histologia , Ixodidae/química , Ixodidae/parasitologia , Nematoides/patogenicidade , Glândulas Salivares/metabolismo , Glândulas Salivares/parasitologia , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...